Applications of broad class knowledge for noise robust speech recognition
نویسنده
چکیده
This thesis introduces a novel technique for noise robust speech recognition by first describing a speech signal through a set of broad speech units, and then conducting a more detailed analysis from these broad classes. These classes are formed by grouping together parts of the acoustic signal that have similar temporal and spectral characteristics, and therefore have much less variability than typical sub-word units used in speech recognition (i.e., phonemes, acoustic units). We explore broad classes formed along phonetic and acoustic dimensions. This thesis first introduces an instantaneous adaptation technique to robustly recognize broad classes in the input signal. Given an initial set of broad class models and input speech data, we explore a gradient steepness metric using the Extended Baum-Welch (EBW) transformations to explain how much these initial model must be adapted to fit the target data. We incorporate this gradient metric into a Hidden Markov Model (HMM) framework for broad class recognition and illustrate that this metric allows for a simple and effective adaptation technique which does not suffer from issues such as data scarcity and computational intensity that affect other adaptation methods such as Maximum a-Posteriori (MAP), Maximum Likelihood Linear Regression (MLLR) and feature-space Maximum Likelihood Linear Regression (fMLLR). Broad class recognition experiments indicate that the EBW gradient metric method outperforms the standard likelihood technique, both when initial models are adapted via MLLR and without adaptation. Next, we explore utilizing broad class knowledge as a pre-processor for segmentbased speech recognition systems, which have been observed to be quite sensitive to noise. The experiments are conducted with the SUMMIT segment-based speech recognizer, which detects landmarks representing possible transitions between phonemes from large energy changes in the acoustic signal. These landmarks are often poorly detected in noisy conditions. We investigate using the transitions between broad classes, which typically occur at areas of large acoustic change in the audio signal, to aid in landmark detection. We also explore broad classes motivated along both acous-
منابع مشابه
Improving the performance of MFCC for Persian robust speech recognition
The Mel Frequency cepstral coefficients are the most widely used feature in speech recognition but they are very sensitive to noise. In this paper to achieve a satisfactorily performance in Automatic Speech Recognition (ASR) applications we introduce a noise robust new set of MFCC vector estimated through following steps. First, spectral mean normalization is a pre-processing which applies to t...
متن کاملروشی جدید در بازشناسی مقاوم گفتار مبتنی بر دادگان مفقود با استفاده از شبکه عصبی دوسویه
Performance of speech recognition systems is greatly reduced when speech corrupted by noise. One common method for robust speech recognition systems is missing feature methods. In this way, the components in time - frequency representation of signal (Spectrogram) that present low signal to noise ratio (SNR), are tagged as missing and deleted then replaced by remained components and statistical ...
متن کاملA robust RNN-based pre-classification for noisy Mandarin speech recognition
This paper addressed the problem of speech signal preclassification for robust noisy speech recognition. A novel RNN-based pre-classification scheme for noisy Mandarin speech recognition is proposed. The RNN, which is trained to be insensitive to noise-level variation, is employed to classify each input frame into the three broad classes of initial, final and pure-noise. An on-line noise tracki...
متن کاملAn Information-Theoretic Discussion of Convolutional Bottleneck Features for Robust Speech Recognition
Convolutional Neural Networks (CNNs) have been shown their performance in speech recognition systems for extracting features, and also acoustic modeling. In addition, CNNs have been used for robust speech recognition and competitive results have been reported. Convolutive Bottleneck Network (CBN) is a kind of CNNs which has a bottleneck layer among its fully connected layers. The bottleneck fea...
متن کاملSpeech Emotion Recognition Based on Power Normalized Cepstral Coefficients in Noisy Conditions
Automatic recognition of speech emotional states in noisy conditions has become an important research topic in the emotional speech recognition area, in recent years. This paper considers the recognition of emotional states via speech in real environments. For this task, we employ the power normalized cepstral coefficients (PNCC) in a speech emotion recognition system. We investigate its perfor...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009